

DEPENDABLE TECHNOLOGIES FOR CRITICAL SYSTEMS

KhronoSim

Simulation and Testing of Real-Time Critical Cyber-Physical Systems

© COPYRIGHT 2018 CRITICAL SOFTWARE

21st June 2018

Topics

- **Cyber-Physical Systems**
- Complex Systems and System of Systems KhronoSim
 - High-Level Overview and Architecture
 - Simulator vs Real Equipment
 - Simulation Manager Overview
 - QEMU Manager Overview
 - Fault Injection Support
 - KhronoSim (simulation example incl. video)

- Integrations of computation, networking, and physical processes
- Embedded computers and networks monitor and control the physical processes, with feedback loops where physical processes affect computations and vice versa
- Physical processes are compositions of many things going on at once, unlike software processes, which are deeply rooted in sequential steps
- CPS design requires understanding the joint dynamics of: computers, software, networks and physical processes
- The mechanisms by which software interacts with the physical world are changing rapidly

• Tight coupling between on-board cyber (processing, communication) and physical (sensing, actuation) elements

e.g. Cyber and physical elements of a space based communication system

Complex Systems and Systems of Systems

- Integrated set of components and sub-systems
 - Tightly interacting together to achieve a specific goal
- Guaranteeing that individual sub-systems behave according to their specifications is a (relatively) "simple" task
 - The magnitude of the validation is much higher when it comes to provide guarantees on the correct integrated behaviour
- All the possible interactions between the sub-systems must be properly tested in order to capture all the system properties

Complex Systems and Systems of Systems

- Testing systems in actual environment is overly expensive and/or too slow
 - In particular when considering Cyber Physical Systems
 - Even simple algorithms and software may become extremely complex to test due to the interaction with the environment
- The use of model and platform simulators is growing in importance to address testing of complex systems
 - Nevertheless there is a challenge on how to integrate the different testing components

- Platform for testing Cyber-Physical Systems in closed-loop
- Distributed, modular, extensible and usable in multiple application domains
- Hard-real-time control, enabling the integration of simulation models to build a closed loop test environment and allowing the use of physical and virtual systems alike

KhronoSim High-Level Overview

CRITICAL

KhronoSim High-Level Architecture

- Launcher:
 - Manage and control the access of a Runner to the SUT
- Runner:
 - Executes the test suite started by the Tester
- Executive:
 - Core component
 - Executes commands and actions requested by the Runner
 - (e.g. sending messages and reading and/or writing electrical signals)
 - Interfaces directly with the SUT

KhronoSim: Simulator vs Real equipment

KhronoSim Simulation Manager Overview

- Runner sub-component
- Responsibilities of coordinating all the aspects of a simulation namely:
 - Start, stop, pause and resume simulation
 - Set simulator parameters
 - Send simulation tick (with a predefined order if needed)
- Simulator types:
 - Cooperative
 - Coordinated by the Simulation Manager, execute by a predefined order
 - Standalone
 - Not coordinated by the Simulation Manager, not executed by a predefined order

Simulators can interact between them

KhronoSim H/W Emulation-in-the-loop support

- Integration of QEMU
- QEMU Manager features
 - Load specific configurations of a platform and/or application
 - Start/Stop emulation
 - Suspend/Resume the execution of the emulated application
 - Execute and trap commands
 - Control the speed of emulation

KhronoSim (simulation example : Automotive Cyber-Physical System)

CRITICAL

KhronoSim tackles the challenge of testing and validating complex Cyber-Physical Systems

- Support mixture of real equipment and simulators
- Using hardware emulation in the testing loop, integrated with models and environment

KhronoSim's QEMU Manager enables the integration of hardware emulation in closed loop

DEPENDABLE TECHNOLOGIES FOR CRITICAL SYSTEMS

Mauro Gameiro

Principal Engineer High Integrity Systems CRITICAL Software

mauro.gameiro@criticalsoftware.com

CRITICAL SOFTWARE AROUND THE WORLD:

www.criticalsoftware.com